Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Biol Cell ; 33(14): ar147, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2269835

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes its Spike (S) glycoprotein to bind to the angiotensin-converting enzyme 2 (ACE2) receptor for cellular entry. ACE2 is a critical negative regulator of the renin-angiotensin system and plays a protective role in preventing tissue injury. Expression of ACE2 has been shown to decrease upon infection by SARS-CoV. However, whether SARS-CoV-2 down-regulates ACE2 and the underlying mechanism and biological impact of this down-regulation have not been well defined. Here we show that the SARS-CoV-2 infection down-regulates ACE2 in vivo in an animal model, and in cultured cells in vitro, by inducing clathrin- and AP2-dependent endocytosis, leading to its degradation in the lysosome. SARS-CoV-2 S-treated cells and ACE2 knockdown cells exhibit similar alterations in downstream gene expression, with a pattern indicative of activated cytokine signaling that is associated with respiratory distress and inflammatory diseases often observed in COVID-19 patients. Finally, we have identified a soluble ACE2 fragment with a stronger binding to SARS-CoV-2 S that can efficiently block ACE2 down-regulation and viral infection. Thus, our study suggests that ACE2 down-regulation represents an important mechanism underlying SARS-CoV-2-associated pathology, and blocking this process could be a promising therapeutic strategy.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , SARS-CoV-2 , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Lysosomes/metabolism , Protein Binding
2.
Nat Commun ; 13(1): 7630, 2022 Dec 09.
Article in English | MEDLINE | ID: covidwho-2160206

ABSTRACT

Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of vascular leak are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to induce barrier dysfunction in vitro and vascular leak in vivo, independently of viral replication and the ACE2 receptor. We identify an S-triggered transcriptional response associated with extracellular matrix reorganization and TGF-ß signaling. Using genetic knockouts and specific inhibitors, we demonstrate that glycosaminoglycans, integrins, and the TGF-ß signaling axis are required for S-mediated barrier dysfunction. Notably, we show that SARS-CoV-2 infection caused leak in vivo, which was reduced by inhibiting integrins. Our findings offer mechanistic insight into SARS-CoV-2-triggered vascular leak, providing a starting point for development of therapies targeting COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/genetics , Endothelial Cells , Integrins , Peptidyl-Dipeptidase A/genetics , Transforming Growth Factor beta
3.
Nat Biomed Eng ; 6(8): 944-956, 2022 08.
Article in English | MEDLINE | ID: covidwho-1991606

ABSTRACT

Rapid nucleic acid testing is central to infectious disease surveillance. Here, we report an assay for rapid COVID-19 testing and its implementation in a prototype microfluidic device. The assay, which we named DISCoVER (for diagnostics with coronavirus enzymatic reporting), involves extraction-free sample lysis via shelf-stable and low-cost reagents, multiplexed isothermal RNA amplification followed by T7 transcription, and Cas13-mediated cleavage of a quenched fluorophore. The device consists of a single-use gravity-driven microfluidic cartridge inserted into a compact instrument for automated running of the assay and readout of fluorescence within 60 min. DISCoVER can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in saliva with a sensitivity of 40 copies µl-1, and was 94% sensitive and 100% specific when validated (against quantitative PCR) using total RNA extracted from 63 nasal-swab samples (33 SARS-CoV-2-positive, with cycle-threshold values of 13-35). The device correctly identified all tested clinical saliva samples (10 SARS-CoV-2-positive out of 13, with cycle-threshold values of 23-31). Rapid point-of-care nucleic acid testing may broaden the use of molecular diagnostics.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva
4.
Nat Genet ; 54(8): 1078-1089, 2022 08.
Article in English | MEDLINE | ID: covidwho-1960394

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of host factors influencing viral infection is critical to elucidate SARS-CoV-2-host interactions and the progression of Coronavirus disease 2019 (COVID-19). Here, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. We uncovered proviral and antiviral factors across highly interconnected host pathways, including clathrin transport, inflammatory signaling, cell-cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high molecular weight glycoproteins, as a prominent viral restriction network that inhibits SARS-CoV-2 infection in vitro and in murine models. These mucins also inhibit infection of diverse respiratory viruses. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and highlights airway mucins as a host defense mechanism.


Subject(s)
COVID-19 , Animals , COVID-19/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Epigenesis, Genetic , Humans , Mice , Mucins/genetics , SARS-CoV-2
5.
Nat Commun ; 13(1): 2766, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1927082

ABSTRACT

A major challenge in coronavirus vaccination and treatment is to counteract rapid viral evolution and mutations. Here we demonstrate that CRISPR-Cas13d offers a broad-spectrum antiviral (BSA) to inhibit many SARS-CoV-2 variants and diverse human coronavirus strains with >99% reduction of the viral titer. We show that Cas13d-mediated coronavirus inhibition is dependent on the crRNA cellular spatial colocalization with Cas13d and target viral RNA. Cas13d can significantly enhance the therapeutic effects of diverse small molecule drugs against coronaviruses for prophylaxis or treatment purposes, and the best combination reduced viral titer by over four orders of magnitude. Using lipid nanoparticle-mediated RNA delivery, we demonstrate that the Cas13d system can effectively treat infection from multiple variants of coronavirus, including Omicron SARS-CoV-2, in human primary airway epithelium air-liquid interface (ALI) cultures. Our study establishes CRISPR-Cas13 as a BSA which is highly complementary to existing vaccination and antiviral treatment strategies.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Humans , Liposomes , Nanoparticles , SARS-CoV-2/genetics
6.
Sci Rep ; 11(1): 20341, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1467127

ABSTRACT

During public health crises like the COVID-19 pandemic, ultraviolet-C (UV-C) decontamination of N95 respirators for emergency reuse has been implemented to mitigate shortages. Pathogen photoinactivation efficacy depends critically on UV-C dose, which is distance- and angle-dependent and thus varies substantially across N95 surfaces within a decontamination system. Due to nonuniform and system-dependent UV-C dose distributions, characterizing UV-C dose and resulting pathogen inactivation with sufficient spatial resolution on-N95 is key to designing and validating UV-C decontamination protocols. However, robust quantification of UV-C dose across N95 facepieces presents challenges, as few UV-C measurement tools have sufficient (1) small, flexible form factor, and (2) angular response. To address this gap, we combine optical modeling and quantitative photochromic indicator (PCI) dosimetry with viral inactivation assays to generate high-resolution maps of "on-N95" UV-C dose and concomitant SARS-CoV-2 viral inactivation across N95 facepieces within a commercial decontamination chamber. Using modeling to rapidly identify on-N95 locations of interest, in-situ measurements report a 17.4 ± 5.0-fold dose difference across N95 facepieces in the chamber, yielding 2.9 ± 0.2-log variation in SARS-CoV-2 inactivation. UV-C dose at several on-N95 locations was lower than the lowest-dose locations on the chamber floor, highlighting the importance of on-N95 dose validation. Overall, we integrate optical simulation with in-situ PCI dosimetry to relate UV-C dose and viral inactivation at specific on-N95 locations, establishing a versatile approach to characterize UV-C photoinactivation of pathogens contaminating complex substrates such as N95s.


Subject(s)
Decontamination/methods , N95 Respirators/statistics & numerical data , SARS-CoV-2/radiation effects , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/transmission , Dose-Response Relationship, Radiation , Equipment Reuse , Humans , Masks , N95 Respirators/virology , Pandemics , Radiometry/methods , SARS-CoV-2/pathogenicity , Ultraviolet Rays , Virus Inactivation
7.
PLoS One ; 16(10): e0258336, 2021.
Article in English | MEDLINE | ID: covidwho-1463315

ABSTRACT

Decontaminating N95 respirators for reuse could mitigate shortages during the COVID-19 pandemic. Although the United States Center for Disease Control has identified Ultraviolet-C irradiation as one of the most promising methods for N95 decontamination, very few studies have evaluated the efficacy of Ultraviolet-C for SARS-CoV-2 inactivation. In addition, most decontamination studies are performed using mask coupons that do not recapitulate the complexity of whole masks. We sought to directly evaluate the efficacy of Ultraviolet-C mediated inactivation of SARS-CoV-2 on N95 respirators. To that end we created a portable UV-C light-emitting diode disinfection chamber and tested decontamination of SARS-CoV-2 at different sites on two models of N95 respirator. We found that decontamination efficacy depends on mask model, material and location of the contamination on the mask. Our results emphasize the need for caution when interpreting efficacy data of UV-C decontamination methods.


Subject(s)
Decontamination , Disinfection , Masks , N95 Respirators , Ultraviolet Rays , Decontamination/instrumentation , Decontamination/methods , Disinfection/instrumentation , Disinfection/methods , Equipment Reuse
8.
ACS Infect Dis ; 7(8): 2337-2351, 2021 08 13.
Article in English | MEDLINE | ID: covidwho-1269368

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has emerged as a major global health threat. The COVID-19 pandemic has resulted in over 168 million cases and 3.4 million deaths to date, while the number of cases continues to rise. With limited therapeutic options, the identification of safe and effective therapeutics is urgently needed. The repurposing of known clinical compounds holds the potential for rapid identification of drugs effective against SARS-CoV-2. Here, we utilized a library of FDA-approved and well-studied preclinical and clinical compounds to screen for antivirals against SARS-CoV-2 in human pulmonary epithelial cells. We identified 13 compounds that exhibit potent antiviral activity across multiple orthogonal assays. Hits include known antivirals, compounds with anti-inflammatory activity, and compounds targeting host pathways such as kinases and proteases critical for SARS-CoV-2 replication. We identified seven compounds not previously reported to have activity against SARS-CoV-2, including B02, a human RAD51 inhibitor. We further demonstrated that B02 exhibits synergy with remdesivir, the only antiviral approved by the FDA to treat COVID-19, highlighting the potential for combination therapy. Taken together, our comparative compound screening strategy highlights the potential of drug repurposing screens to identify novel starting points for development of effective antiviral mono- or combination therapies to treat COVID-19.


Subject(s)
Antiviral Agents , COVID-19 , Antiviral Agents/pharmacology , Humans , Pandemics , SARS-CoV-2
9.
PLoS One ; 16(2): e0246647, 2021.
Article in English | MEDLINE | ID: covidwho-1060986

ABSTRACT

Re-opening of communities in the midst of the ongoing COVID-19 pandemic has ignited new waves of infections in many places around the world. Mitigating the risk of reopening will require widespread SARS-CoV-2 testing, which would be greatly facilitated by simple, rapid, and inexpensive testing methods. This study evaluates several protocols for RNA extraction and RT-qPCR that are simpler and less expensive than prevailing methods. First, isopropanol precipitation is shown to provide an effective means of RNA extraction from nasopharyngeal (NP) swab samples. Second, direct addition of NP swab samples to RT-qPCRs is evaluated without an RNA extraction step. A simple, inexpensive swab collection solution suitable for direct addition is validated using contrived swab samples. Third, an open-source master mix for RT-qPCR is described that permits detection of viral RNA in NP swab samples with a limit of detection of approximately 50 RNA copies per reaction. Quantification cycle (Cq) values for purified RNA from 30 known positive clinical samples showed a strong correlation (r2 = 0.98) between this homemade master mix and commercial TaqPath master mix. Lastly, end-point fluorescence imaging is found to provide an accurate diagnostic readout without requiring a qPCR thermocycler. Adoption of these simple, open-source methods has the potential to reduce the time and expense of COVID-19 testing.


Subject(s)
COVID-19/diagnosis , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing , Chemical Precipitation , Coronavirus Nucleocapsid Proteins/genetics , Humans , Limit of Detection , Nasopharynx/virology , Phosphoproteins/genetics , RNA, Viral/isolation & purification , RNA, Viral/metabolism , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL